Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device.

نویسندگان

  • Mengsu Yang
  • Cheuk-Wing Li
  • Jun Yang
چکیده

We have developed a microfluidic device for on-chip monitoring of cellular reactions. The device consists of two primary analytical functions: control of cell transport and immobilization, and dilution of an analyte solution to generate a concentration gradient. In this device, a dam structure in parallel to the fluid flow was constructed for docking and alignment of biological cells, which allows the fragile cells to move in the microfluidic channels and to be immobilized with controllable numbers in desired locations. The cells docked on the parallel dam structure are exposed to minimal stress caused by fluidic pressure. Additionally, a network of microfluidic channels was designed to generate a concentration gradient by controlled fluid distribution and diffusive mixing. An analyte solution could be diluted to different gradients as a function of distance along the dam. We used the ATP-dependent calcium uptake reaction of HL-60 cells as a model for on-chip measurement of the threshold ATP concentration that induces significant intracellular calcium signal. The results have demonstrated the feasibility of using the microchip for real-time monitoring of cellular processes upon treatment of a concentration gradient of a test solution. The integration of cell manipulation and solution manipulation on a microchip allows the measurement of concentration-dependent biological responses within a confined microscale feature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study.

Precisely controlling the spatial distribution of biomolecules on biomaterial surface is important for directing cellular activities in the controlled cell microenvironment. This paper describes a polydimethylsiloxane (PDMS) gradient-generating microfluidic device to immobilize the gradient of cellular adhesive Arg-Gly-Asp (RGD) peptide on poly (ethylene glycol) (PEG) hydrogel. Hydrogels are fo...

متن کامل

Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.

This paper reports a microfluidic device capable of generating oxygen gradients for cell culture using spatially confined chemical reactions with minimal chemical consumption. The microfluidic cell culture device is constructed by single-layer polydimethylsiloxane (PDMS) microfluidic channels, in which the cells can be easily observed by microscopes. The device can control the oxygen gradients ...

متن کامل

Simultaneous measurement of reactions in microdroplets filled by concentration gradients.

This work describes a technology for performing and monitoring simultaneously several reactions confined in strings of microdroplets having identical volumes but different composition, and travelling with the same speed in parallel channels of a microfluidic device. This technology, called parallel microdroplets technology (PmicroD), uses an inverted optical microscope and a charge-coupled devi...

متن کامل

Human neural stem cell growth and differentiation in a gradient-generating microfluidic device.

This paper describes a gradient-generating microfluidic platform for optimizing proliferation and differentiation of neural stem cells (NSCs) in culture. Microfluidic technology has great potential to improve stem cell (SC) cultures, whose promise in cell-based therapies is limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 74 16  شماره 

صفحات  -

تاریخ انتشار 2002